Duke Energy's Clean Energy Vision

Regis Repko, Senior Vice President, Generation & Transmission Strategy

Catawba-Wateree Water Management Group 03/30/2022

Key takeaways

- Major changes are coming in electricity infrastructure
- Duke Energy is driving the largest out-of-coal transition in the industry
- Large clean-generation enters 2030-2035 timeframe
- Significant emerging technologies needed post 2035
- Decarbonized generation mix will still require water
 - Regional watershed planning remains important

Accelerating toward a clean energy future

Actions we're taking for our communities, while keeping energy affordable and reliable

Duke Energy is leading the industry's largest clean energy transition

What we're doing

Completing the largest planned coal retirement in the industry

- Retired 56 units (7.5 GW) since 2010
- Coal generation <5% fuel mix by 2030
- Goal to exit coal generation by 2035⁽¹⁾

Expanding our renewable resources

- Top 10 US renewable company by capacity, with operations in 25 states
- Passed 10 GW owned, operated or purchased in 2021, targeting 24 GW by 2030

Targeting Net-Zero Emissions by 2050

- Reduced carbon emissions by 44% since 2005, on pace to exceed 50% reduction by 2030 and net zero by 2050 (Scope 1)
- Net zero methane emissions by 2030 (Scope 1)
- Setting new 2050 goals to include Scope 2 and certain Scope 3⁽²⁾ emissions for electric and gas utilities

How we're doing it

Collaborating with state and federal policymakers

- Landmark bipartisan legislation in NC that accelerates our clean energy transition
- Engaging policymakers and regulators to advance shared objectives on climate

_		
		_
		_
	_	_

Integrated resource plans that match our climate goals

- Significant stakeholder engagement on jurisdictional IRPs & NC Carbon Plan
- Balancing affordability and reliability priorities on behalf of our customers

Executing our plan

- Constructive rate cases that accelerate coal retirements and call for more renewables
- Extending the life of the largest regulated nuclear fleet in the country
- Managing through supply chain issues
- Leveraging our size and scale to efficiently finance this robust capital plan
- (1) Subject to regulatory approvals. Contemplates retiring Edwardsport coal gasifiers by 2035 or adding carbon capture utilization and storage to reduce carbon emissions
- (2) Certain scope 3 emissions include: emissions from upstream fossil fuel procurement, production of power purchased for resale, and from downstream use of sold products in our natural gas distribution business

Generation & Transmission Strategy

4

Transforming the way we produce power

- (1) 2005 and 2021 data based on Duke Energy ownership share of U.S. generation assets as of Dec. 31, 2021
- (2) 2021 data excludes 9,088 GWh of purchased renewables, equivalent to ~4% of Duke Energy's output
- (3) 2030 estimate will be influenced by customer demand for electricity, weather, fuel and purchased power prices, and other factors

Developing technologies

Carbon Capture Utilization & Sequestration (CCUS)

- · Post-ignition carbon capture technology exists
- Limited CO2 utilization
- Requires large scale storage not available in Carolinas or transport
- Pre-combustion technologies developing
- Supplemental expense to gas generation

Hydrogen

- Decarbonization for gas generation assets
- Working with Siemens and Clemson University study project for hydrogen blending
- Opportunities for a regional "Hydrogen Hub" to advance opportunities for a hydrogen economy

Offshore Wind

- Mature technology with global operating experience
- Inherent resource for the Carolinas
- Technology continuing to evolve
- Operating risk

Small Modular Reactors(SMR) / Advanced Nuclear(AR)

- Dispatchable
- · Light water and storage designs
- Duke Energy participating in advisory roles
- Availability in the 2030s

Long Duration Storage

- More renewables requires longer duration storage
- Complement renewable resources
- Multiple storage technologies electro-chemical, mechanical, compressed gas, chemical, pumped hydro
- Complement non-dispatchable generating resources
- · Availabilities and deployment cost vary

Generation & Transmission Strategy

TECHNOLOGY from concept to commercialization

www.epri.com

Hydro will continue to play a key role

- Relicensing of Bad Creek Powerhouse
- Evaluating expansion for second powerhouse
- Existing hydropower stations are **still important** after more than a century
 - Clean, renewable, most efficient, flexible (shutdown-to-full power-to shutdown in less than 10 minutes)
 - Peaking energy
 - Supports transmission system needs (load following, voltage support, black start)
 - Community values (water supply, waste assimilation, economic development, recreation, quality of life)
- Zero-carbon generation mix still requires water: regional watershed planning important
 - Future nuclear
 - Hydrogen

Summary

- Duke Energy has an integrated vision for our energy future and Path to Net Zero
- Aggressive decarbonization of generation warrants consideration of all technologies
 - Expansion of today's available carbon free generation technologies
 - Monitoring developing technologies and participating in industry research and pilots to advance developing technologies to commercialization
 - Traditional technology paths from concept to commercialization have taken decades
- Requires a diverse portfolio of technologies as we work toward the Path to Net Zero

